首页> 外文OA文献 >The Presence of Multiple Cellular Defects Associated with a Novel G50E Iron-Sulfur Cluster Scaffold Protein ( ISCU) Mutation Leads to Development of Mitochondrial Myopathy
【2h】

The Presence of Multiple Cellular Defects Associated with a Novel G50E Iron-Sulfur Cluster Scaffold Protein ( ISCU) Mutation Leads to Development of Mitochondrial Myopathy

机译:与新的G50E铁硫簇支架蛋白(ISCU)突变相关的多个细胞缺陷的存在导致线粒体肌病的发展。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.
机译:背景:铁硫(Fe-S)簇支架蛋白(ISCU)的肌肉特异性缺乏导致肌病。结果:携带与肌病相关的G50E ISCU突变的细胞表现出受损的Fe-S簇生物发生和线粒体功能障碍。结论:减少的Fe-S簇合成导致线粒体呼吸减少,导致肌病患者的肌肉无力。意义:疾病进展的分子机制应为对抗ISCU肌病提供宝贵的信息。铁-硫(Fe-S)簇是多功能辅因子,参与调节多种生理活动,包括通过细胞呼吸产生能量。最初,Fe-S簇与人类线粒体中的铁和硫供体蛋白协同作用,组装在一个保守的支架蛋白铁硫簇支架蛋白(ISCU)上。 ISCU功能的丧失导致肌病,其特征在于肌肉消瘦和心脏肥大。除纯合ISCU突变(g.7044GC)外,还发现患有严重肌病的复合杂合患者携带c.149GA错义突变,将甘氨酸50残基转化为谷氨酸。但是,尚未阐明与G50E突变相关的生理缺陷和分子机制。在本报告中,我们使用人细胞系和酵母作为模型系统,揭示了有关人中G50E ISCU突变如何导致严重ISCU肌病发展的机理性见解。生化结果表明,G50E突变导致与硫供体NFS1和J蛋白HSCB的相互作用减弱,从而损害了Fe-S团簇的合成速率。结果,电子传输链复合物的氧化还原特性显着降低,导致细胞呼吸丧失。此外,G50E突变体线粒体显示出铁水平和活性氧种类的增强,从而引起氧化应激,导致线粒体功能受损。因此,我们的发现提供了令人信服的证据,即肌病患者中由于Fe-S团簇生物发生受损导致的呼吸缺陷会导致复杂的临床症状的表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号